Sunday, 31 January 2010

Carpe Diem


    
人生本来就是一场奇妙的旅程,想想,多么低的概率,才能够投胎出生呢?从小到大,有多少意外会发生,我们平平安安活到现在,想做点自己喜欢的事情,容易么?人生本来就是不确定的,最大的魅力也恰恰在于此:)

     
晚上打开电脑,惊闻一个网上认识的不错的朋友,出了严重的车祸,他是IT的,通过多年的奋斗,在上海存了不少钱,也有了不少房产,仍然做着不喜欢的IT。听说,他很想改行,去做作家,写自己喜欢的东西,但是家里不同意,就一直没有做,怕父母担心,因为他们觉得当作家本身就不靠谱。我不知道,他在出车祸的一刹那的时候,想到死亡的时候,他会不会后悔,还没有来得及做自己喜欢的东西呢?

    
后来才得知,虽然他的车撞碎了,但他命大,人还平安,放心了,人品真是无敌啊!!不过我相信,他的人生从此将不同!

     献给2月的第一天,我相信,明年的这个时候我会更懂Carpe
Diem的意义。

 


Friday, 29 January 2010

突然一切又有了意义



     如果一个人的愿望是有钱,那么当他真的有了很多钱的时候,他的活着的意义是什么呢,是不是可以满足的就地去死呢?如果一个人的愿望是娶个美女,那他真的娶了一个美女以后,是不是失去了人生的追求和方向了呢?

    
当我混混噩噩的度过了去年,在今天晚上,突然意识到老天实在是太厚待我了。我占有了太多的资源和机会,而我却没有努力利用这些机会来回报,没有努力去洗荡和净化自己的灵魂。

     一切物质都会远去,只有灵魂还在。

 

Monday, 25 January 2010

雷女士系列(一)


     
话说,某人一天清晨去西单图书大厦看原版书,在这层看完了以后,打算下楼看国内出版的书,在电梯口绕啊绕啊绕了好半天都没有找到向下的电梯。好不容易抓到一个保安,就急急得问他,“怎么下楼呀?”

     
这小哥生得白白净净,眉清目秀的 ,大约19岁。一听我的问题,立马脸色一变,一脸严肃的看着我,一字一顿地说
:“进来了这里你就出不去了”,我当时就被雷倒了,“啊!!进来就出不去是什么意思啊!!我要去三楼买书,我要下楼!·#¥%……—*(......”

     
小保安愣了一下,定了定神,小心翼翼地观察我的脸,说“这里不能下楼,只能上楼。这里是地下室......”

      脸红,掩面,吐血暴走.....

Thursday, 21 January 2010

携手走过,水样四年



    
4年前的今天,迷迷糊糊滴从床上挣扎滴睁开眼睛,看了一下表,想再睡一小会,突然反应过来,惊叫一声,迅速爬了起来,飞奔下楼,打车到宝山地区。前面有N多帅哥美女忙着填写表格,还好还好,先排队领号,再速度搞定表格,前面还有若干人呢,休息片刻先。等冲到前面盖章签字,工作人员为两个目光呆滞的人签字拍照发证收钱的时候,时间刚刚好是11点30分,周六的受理就结束了。要结婚?等下周吧!哈哈

 

    
等等,如此冲锋陷阵是在结婚么?是的。两个还未睡醒的人,突然在中午肚子饿得咕咕叫提醒下,在冲锋结束时候,才意识到已经变成已婚人士了。出了民政局的第一反应是什么?甜蜜+隐隐不安。以后在吵架、分手、上吊之前,要想明白这种种后果了。首先,吵架题材扩大太多,原来只是2个人之间的事情,变成了亲戚之间的事情;其次,突然天上掉下来一对父母,一堆兄弟和亲戚。这可真真要适应好一段时间;好嘛,婚后的磨合期开始了。每个星期的吵架变成了例行公事,就像2只蛐蛐,在场内斗的正凶呢,场外的父母们在旁边或者拿跟小草棍挑拨离间火上浇油,或是看到被咬伤了,心疼了干着急。

 


     当每次吵架都以修正大会作为结尾的时候,战败方写检查,胜利方的泪痕掩饰不了胜利的喜悦或是冷酷的面庞下嘴角有了微妙的上扬,这磨合期也就快过去了。于是,从某个时间开始,没得吵了。想吵架?拜托,有点新意吧!几乎每个题材都已经被轮番吵过,这大盘还有个不疲软?两个人的生活也开始波澜不惊了......

  

     
大约从什么时候开始,父母开始变得没有这位Partner“重要"了.....,当然,甭误会,我说的是在你的感情依赖方面。想象一下,某个漆黑的夜晚,你在前面拼命逃窜,后面有坏人追杀,而这位partner在哪里呢?他居然在后面慢慢地走,导致的结果是,坏人也跟这他慢慢的走,任你在前面折腾。好笑吧?你知道为啥么?他要也一追过来,后面这位熊猫大侠还不一把把他揪过来?于是,你就可以心安理得的在前面四处乱窜,而坏人在后面也无可奈何。这一刻,感受的是超重的安全感。这种种过结,你也不过会在烟消云散之后,漫不经心地和老爹老娘谈笑一下,而在惊心动魄的关头,只有你partner才能分享。

 

    
好吧,我承认,亲情更浓了,爱情也未见减少。也许因为天蝎巨蟹都是考古学家,越老越值钱越喜欢。也许我们在刀光剑影后有了惺惺相惜的感情。爱过,打过,才有无悔过。

 

     携手慢慢变老,享受幸福。 


Wednesday, 6 January 2010

Lane翻译,zz

一般没有用alley的吧。中国翻译法 

英文里比较小的街道一般用 ln. ct. 就是 lane, court的意思

比这个大一些的叫做dr. st. drive, street

在大一些是road, ave.

弄堂翻译成ln. 比较合适

一般是这么翻译:

17 335th ln. off Gonghexin rd.
apt 505
shanghai, xxxxxx
china.

505室一般写在第二行(如果有的话)下一行一般是 城市,州/省,邮编,最下一行国家。

多少弄一般不写作 lane xxx, 而是xxxth(nd,st,rd) ln.(lane)

举个例子
1008 29th St,
Ashland, Boyd, Kentucky 41101
U.S.A

转:How Do I Write a Business Analyst Resume?

A Business Analyst is responsible for analyzing the business needs of their customers (small to large businesses) and coming up with solutions to business problems. Despite the job being highly skilled, time and time again, the question; how do I write a Business Analyst resume? Comes up. It is time to answer this question once and for all, by giving helpful hints and tips on addressing the question “How do I write a Business Analyst resume?”

 

Firstly, you must outline the skills and knowledge required of the job, show that you possess these skills and knowledge and link it to experience and/or education. So lets look at each of these in turn.(Y:目标导向)

 

You must have knowledge of the subject of the business; there is no point in asking “how do I write a business analyst resume?” if you don’t even had the skills or experience to list on your resume. Whilst complexity varies, this is relatively important to include on your business analyst resume. 

 

Secondly, you must have the skills of Business Processes, this is instrumental in business process re-engineering. There are a number of tools used for this, make sure you include your knowledge and experience in your resume. Furthermore, you need IT capabilities, Feasibility, and Relevance knowledge. These need to be addressed in turn on your resume or included in your experience. Hopefully by this stage you should be getting a better idea of how do I write a business analyst resume. 

 

Finally, make sure you list any certifications, and if your experience is in a different field, make sure you link the prerequisites of analytical skills, and technical/business background. 

转:一个牛人的CV

虽然是银行类,但是很有借鉴意义

http://www.alanscully.com/ 

Alan SCULLY

contact: my first name . my last name @gmail.com

 

Nationality       British

Date of Birth   1972.10.22

Location          Currently in Tokyo, Japan. Willing to relocate.

Brief

I am currently living in Tokyo, Japan working as in Business Analyst and IT Risk roles (dual-heading) for a major investment bank. Previous to living in Japan, I lived in Seoul, Korea, in Hong Kong, and in London, England.

I have long term experience working in IT in Investment Banking. From starting out as a developer, I've co-ordinated projects, become a Business Analyst, and recently moved into IT Risk. Although most of my career has been in Equity Derivatives and Cash, I have worked with Private Banking, Compliance, IT Risk, Business Continuity Management, Support, Operations, and Asset Management and liased with exchange bodies and external vendors. I have worked with London, Hong Kong, Japan, Korea, Australia, New York, and offsite development centers (eg Singapore, Pune).

Exposure across the investment bank has given me vision and insight that others may lack - an understanding of regulatory concerns in highly regulated areas such as Korea and Japan; ability to identify common solutions which will work across departments and locations; attention to disaster recovery, reliability, and support issue management.

Outside investment banking, as Chief Technology Officer of an internet company, I managed a team of developers, infrastructure specialists, and designers, as well as co-ordinating and reporting at board level.

I reached Vice President level at Citigroup at the age of 27.

I would be most suited to a senior role which involves co-ordination across departments and locations, where attention to regulatory and reliability issues is of upmost importance. This could be in an area in which I have worked before - such as IT Risk, BCM, Business Analysis - or in another senior IT management or project co-ordination role in an area I have not worked before. I am looking forward to bringing my experience and drive to a new company and addressing new challenges.

Languages

English - Native speaker.  Korean - Intermediate (see Education).

Education

Sogang University, South Korea - Korean Language - 2003 to 2005

University Of Glasgow, UK - BSc (Hons) Computing Science - First Class - 1990 to 1994

Employment History

Major Investment Bank (Japan) - Vice President (VP) – September 2006 to Present

Business analysis and management of high profile key Equities projects such as the in-house electronic trading system, integrating trading and booking systems with Private Banking, business continuity planning (ensuring trading can continue in the event of a disaster), trade reporting, and legal ticketing. Co-ordinating between departments and across locations, managing the book of work for several development groups. Recently dual-heading with an IT Risk role, involving investigating systems for compliance against exchange regulations, and recommending changes to improve production stability and reduce IT risks from project design time.

UBGlobal (Korea) - Senior Manager - Dec 2005 to March 2006

Report directly to company owners and advise on company restructuring. Business analysis and project management, including planning of international marketing strategy and managing developers working on internet site upgrades.

Education: Sogang University (Korea) - Korean Language  - 2003 to 2005

Citigroup, Salomon Smith Barney (Hong Kong) - Independent Consultant - June 2001 to Jan 2003

Business analysis, project management, development, and support in Equity Derivatives: Korea KOSDAQ and KSE exchange connectivity, external broker connectivity, trading system enhancements (eg, basket trading, risk viewing). Liaison between HK and Korea, legal, compliance, traders, exchanges, and vendors. Frequent visits to Korea. Daily direct interaction with traders, including business analysis with the desk heads and trader support.

Saffron Hill Venture Capital (UK) - Chief Technology Officer - May 2000 to June 2001

First in the role of Technical Development Manager, evaluating companies for potential investment, business analysis and management of internet projects within portfolio companies. Promoted to Chief Technology Officer of a Saffron Hill portfolio company, managing a team of developers, infrastructure specialists, and designers. Tasked to analyse and turn around the failing launch of the company's portal and shopping internet sites. Under my management the extensively delayed projects were successfully completed, and the portal website won an award as the UK's best Asian internet site.

Citigroup, Salomon Smith Barney (UK) - Vice President (VP) - June 1998 to April 2000

Project management, development, and support in Equity Derivatives: LIFFE, XETRA, and LSE exchange connectivity, trading system enhancements (eg, strategy trading, automatic market making, arbitrage opportunity searching), risk management (live and reporting). Liaison between Citigroup and exchanges. Representing Citigroup and performing exchange acceptance tests. Daily direct interaction with the traders. Achieved Vice President position due to consistent and accurate delivery of high profile trading projects.

Morgan Stanley Dean Witter Limited (UK) - Developer - July 1997 to June 1998

Project management, development, and support in Global Equity Cash Trading, in charge of the Order Management application in London. Impact analysis of global changes to London. Local modifications. Designed enhancements for real time international internal order routing. Created web based support system. Co-ordinated with New York and Tokyo Japan. Represented London in global meetings. Managed relationship with users and support staff.

Salomon Brothers International Limited (UK) - Developer - July 1994 to July 1997

Project management, development, and support in Market Data and Equity Derivatives teams: SOFFEX exchange connectivity, design of an external broker intranet trading system, and Tibco market data projects.

J P Morgan (UK) - Intern - July 1993 to September 1993

Intern position before final year of university. Development in Global SWAPs.

Education: University Of Glasgow (UK) - BSc (Hons) Computing Science, First Class - 1990 to 1994

Interests

My interests include healthy living, appreciation of music, comedy, cooking (Mexican, Italian, and Korean), photography, hiking, and language.

 

 

ZZ:Business Analysis Career Path

The Business Analysis Career Path has been an ongoing discussion within IT circles for quite a while. If you browse through the blogs in the ‘Business Analysis’ category here, you should find more information on Business Analysis and how it fits into the overall IT organization and project structures. Assuming that all the readers have some background understanding, I am discussing some of the career path related matters here.

To start a career in BA, a person needs to have either business background in the specific industry domain or a broad IT knowledge. Given that this basic foundation exists, someone can step in to the BA world! This starting step would be something like Systems Analyst or Associate/Junior Systems Analyst. After the systems analysis skills are fully achieved, the person can move to be a Business Analyst. Progressively, this could start from something like Associate/Junior BA and then move to be a BA and when at a highly skilled autonomous level, a Senior/Lead BA.

Around this area, it becomes quite a discussion where a person can/should go. In a way, it’s a business decision based on what can be taken out of such individuals based on the skills they posses and also a personal decision what each individual want to do in their careers and also what they want to achieve in their respective lives. I personally see two branches from here onwards and upwards and also notice that most organizations have adopted these two progression paths.

One is to grow within the same line but take on more challenging opportunities. Becoming a Business Consultant would be the next best position to move in this path. The second branch is to move to Project/General Management. The knowledge gained on scoping projects, managing projects, change management and extensive business knowledge will be highly helpful for a successful career if someone decides to take on this path. If someone decides not to move onto management, Business Consultancy would offer a great amount of opportunities and exciting challenges as it’s a career path of its own and as most people would say, the sky is the only limit! It’s a highly autonomous position where you get to lead people, manage client expectations, propose solutions and involve in negotiations etc. As a consultant, avoiding management wouldn’t be possible, but still you would be a leader who understands what’s being done which makes it easier to stay on top of things and lead others to success.

Last but not least, this is a very interesting, challenging area within the IT industry which offers so many opportunities even though we find fewer people interested in it comparatively. If I have been able to create some interest and awareness, I can be happy......

zz: A Data Analyst's Typical Day

What is a typical day for a data analyst? Is it one that begins with a commute to work and ends with a commute home? Is it one that finds the data analyst satisfied with his/her day or frustrated and/or angry? Does this analyst sleep peacefully or dream of blue screens? Does the morning find the data analyst excited at the prospect of new challenges or hoping that the day goes quickly?My days include all of the above possibilities. Some are more interesting and enjoyable than others. But the reason I keep at it? As a data analyst, I often find myself loosing track of time and place as I:

1. Learn to use new software to answer old business questions
2. Discover the source data that causes the problems downstream
3. Uncover simpler ways of doing things
4. Forage through rows of data, realizing patterns
5. Build new reports that answer unusual end-user questions
6. Modify reports to correct longstanding problems
7. Listen intently to a manager, translating what she says into data fields
8. Design queries for different legacy databases using multiple BI packages
9. Figure out how tho make these queries yield comparable data
10. Present reports to customers that elicit good questions and no doubts

I have managed people and projects, and sold products and relationships. All of these activities have proved challenging, but none has captured my attention in the way data analysis does. Mihaly Csikszentmihalyi, a brilliant observer of human experience, calls this experience 'flow.' Flow is a psychophysiological state that occurs when people perform challenging tasks, feeling intense concentration and a sense of commitment.

That's me, a data analyst, staring at a computer screen, feeling that this user's question is the most important thing. A thrill charges through me when I discover how the *!$%#@! (innacurate) data is getting into the database. I enjoy a brief sense of confidence when I identify a business trend that is built on (relatively) clean data.

BTW, I call myself a data -- or a business -- analyst. I realize that data analyst, database analyst, systems analyst, business analyst, reporting specialist, etc. are used interchangeably in today's job market. Until you read the job description, there's no way to know the skills needed. I've decided that this an issue that doesn't interest me. As far as I can tell, job descriptions cause more problems than they solve. They are commonly static, hierarchical, and vague in a business climate/world that isn't.

If you want, tell us all what you think about any of the above. I'd like to have a more accurate understanding of how strange I really am -- relative to the rest of you.

zz Data Analyst-Sample Resume - Resume Writing

Amy Smith
123 Main Street
Atlanta, Georgia 30339
Home: (555) 555-1234
Cell: (555) 555-1235

asmith@sample~resume.com

Objective

Data Analyst 

 

Summary
More than twelve years of experience with reporting software, including Business Objects, Crystal Reports, Cognos. Sound understanding of relational and denormalized databases. Working knowledge of SQL required. Proficient with Siebel, Aspect Call Center, and Aspect Data Mart.

Employment History

1997 - Present        Data Analyst
Institute for Data Research, Oceanside, CA
Planned and built a large Perl application for translation of legacy HTML documentation in XML. Planned and built Java servlets for serving dynamic content using XML/XSLT. Personally developed many custom programs for transformation of legacy data for large clients using Perl/Python. Authored and taught modules and courses dealing with topics such as Strategic Implications of XML for Organizations, XSLT Programming, XML Architecture and related topics to audiences primarily consisting of CIOs, data analysts, and data managers.

1994 - 1997            Junior Data Analyst
Capital Financial, Eugene, OR
Wrote Unix utilities on HP/UX, Linux, and Unix System Services for OS/390. Wrote web front ends for user tracking systems using Perl, GI, and RDBMS's. Coordinated company-wide rollout of software packages to 3 different platforms.

Education

1990                    B.A., Computer Science
                          University of Texas, Austin, TX

zz:What Does a Data Analyst Do?

A data analyst is a highly trained individual that specializes in collecting, organizing, and analyzing data from various resources. For example, the data may be obtained from secondary source documents such as statistical studies, or from direct consumer marketing surveys. In terms of analysis, the data analyst generally uses data management and reporting systems to collect and organize specific data drawn from relational databases. While this process is largely automated, it must first be initiated by developing mathematical computations and collection protocols in order to extract and extrapolate data into meaningful statistical analysis or “what if” scenarios.

 

Although the primary tasks of this position are compilation and analysis of numerical information, a data analyst often takes on other roles. For one thing, he or she is expected to possess a certain degree of technical expertise with automatic data collection and reporting systems, including a capacity for program troubleshooting and system security measures. Depending on the nature of the data being collected and analyzed, the individual may also be required to be familiar with procedural standards and regulations specific to a particular area of research, industry, or market. In addition, data analysts often engage in making projections regarding future trends based on current economic and/or market conditions. In some cases, the data analyst may be involved the research phase of a project by participating in the design and implementation of relevant studies and surveys. 

 

Most data analysts are also comfortable with the reporting aspects of data analysis in terms of preparing written summaries to accompany graphs and charts. However, this position often calls for additional writing tasks, such as drafting company memorandum, press releases, or other documentation. In addition, this position often lends itself to collaborating with database programmers and administrators in writing system modification recommendations, or in-house instruction and training materials.

Data analysts typically find employment in a business or clinical setting and can usually expect to work a 40-hour week. However, certain projects or those given high priority status may require devoting an occasional evening or weekend to the job. In addition, some data analysts find that they can work from home or other remote location a few days a week or more. In fact, as communications technology continues to advance, this trend is becoming increasingly more feasible.

 

In terms of qualifications, a minimum of a four-year degree from a college or university is usually required, preferably in statistics, computer science, or business administration. However, other coursework may be acceptable if the candidate can also demonstrate substantial experience working in a related field, such as statistical analysis or research. Of course, many professionals entering this field obtain a Master’s Degree in order to maximize their starting salary and advancement potential. 

 

zz Data Analysis Process

An interesting article....easy to understand.


Summary, be critical..... MindMap Chart Below...




By Robert Niles


You wouldn't buy a car or a house without asking some questions about it first. So don't go buying into someone else's data without asking questions, either.


Okay, you're saying... but with data there are no tires to kick, no doors to slam, no basement walls to check for water damage. Just numbers, graphs and other scary statistical things that are causing you to have bad flashbacks to your last income tax return. What the heck can you ask about data?


Plenty. Here are a few standard questions you should ask any human beings who slap a pile of data in front of you and ask you write about it.



  1. Where did the data come from? Always ask this one first. You always want to know who did the research that created the data you're going to write about.


    You'd be surprised - sometimes it turns out that the person who is feeding you a bunch of numbers can't tell you where they came from. That should be your first hint that you need to be very skeptical about what you are being told.


    Even if your data have an identifiable source, you still want to know what it is. You might have some extra questions to ask about a medical study on the effects of secondhand smoking if you knew it came from a bunch of researchers employed by a tobacco company instead of from, say, a team of research physicians from a major medical school, for example. Or if you knew a study about water safety came from a political interest group that had been lobbying Congress for a ban on pesticides.


    Just because a report comes from a group with a vested interest in its results doesn't guarantee the report is a sham. But you should always be extra skeptical when looking at research generated by people with a political agenda. At the least, they have plenty of incentive NOT to tell you about data they found that contradict their organization's position.


    Which brings us to the next question:


  2. Have the data been peer-reviewed? Major studies that appear in journals like the New England Journal of Medicine undergo a process called "peer review" before they are published. That means that professionals - doctors, statisticians, etc. - have looked at the study before it was published and concluded that the study's authors pretty much followed the rules of good scientific research and didn't torture their data like a middle ages infidel to make the numbers conform to their conclusions.


    Always ask if research was formally peer reviewed. If it was, you know that the data you'll be looking at are at least minimally reliable.


    And if it wasn't peer-reviewed, ask why. It may be that the research just wasn't interesting to enough people to warrant peer review. Or it could mean that the research had as much chance of standing up to professional scrutiny as a $500 mobile home has of standing up in a tornado.


  3. How were the data collected? This one is real important to ask, especially if the data were not peer-reviewed. If the data come from a survey, for example, you want to know that the people who responded to the survey were selected at random.


    In 1997, the Orlando Sentinel released the results of a poll in which more than 90 percent of those people who responded said that Orlando's National Basketball Association team, the Orlando Magic, shouldn't re-sign its center, Shaquille O'Neal, for the amount of money he was asking. The results of that poll were widely reported as evidence that Shaq wasn't wanted in Orlando, and in fact, O'Neal signed with the Los Angeles Lakers a few days later.


    Unfortunately for Magic fans, that poll was about as trustworthy as one of those cheesy old "Magic 8 Balls." The survey was a call-in poll where anyone who wanted could call a telephone number at the paper and register his or her vote.


    This is what statisticians call a "self-selected sample." For all we know, two or three people who got laid off that morning and were ticked off at the idea of someone earning $100 million to play basketball could have flooded the Sentinel's phone lines, making it appear as though the people of Orlando despised Shaq.


    Another problem with data is "cherry-picking." This is the social-science equivalent of gerrymandering, where you draw up a legislative district so that all the people who are going to vote for your candidate are included in your district and everyone else is scattered among a bunch of other districts.


    Be on the lookout for cherry-picking, for example, in epidemiological (a fancy word for the study of disease that sometimes means: "We didn't go out and collect any data ourselves. We just used someone else's data and played 'connect the dots' with them in an attempt to find something interesting.") studies looking at illnesses in areas surrounding toxic-waste dumps, power lines, high school cafeterias, etc. It is all too easy for a lazy researcher to draw the boundaries of the area he or she is looking at to include several extra cases of the illness in question and exclude many healthy individuals in the same area.


    When in doubt, plot the subjects of a study on map and look for yourself to see if the boundaries make sense.


  4. Be skeptical when dealing with comparisons. Researchers like to do something called a "regression," a process that compares one thing to another to see if they are statistically related. They will call such a relationship a "correlation." Always remember that a correlation DOES NOT mean causation.


    A study might find that an increase in the local birth rate was correlated with the annual migration of storks over the town. This does not mean that the storks brought the babies. Or that the babies brought the storks.


    Statisticians call this sort of thing a "spurious correlation," which is a fancy term for "total coincidence."


    People who want something from others often use regression studies to try to support their cause. They'll say something along the lines of "a study shows that a new police policy that we want led to a 20 percent drop in crime over a 10-year period in (some city)."


    That might be true, but the drop in crime could be due to something other than that new policy. What if, say, the average age of those cities' residents increased significantly over that 10 year period? Since crime is believed to be age-dependent (meaning the more young men you have in an area, the more crime you have), the aging of the population could potentially be the cause of the drop in crime.


    The policy change and the drop in crime might have been correlated. But that does not mean that one caused the other.


  5. Finally, be aware of numbers taken out of context. Again, data that are "cherry picked" to look interesting might mean something else entirely once it is placed in a different context.


    Consider the following example from Eric Meyer, a professional reporter now working at the University of Illinois:


    My personal favorite was a habit we use to have years ago, when I was working in Milwaukee. Whenever it snowed heavily, we'd call the sheriff's office, which was responsible for patrolling the freeways, and ask how many fender-benders had been reported that day. Inevitably, we'd have a lede that said something like, "A fierce winter storm dumped 8 inches of snow on Milwaukee, snarled rush-hour traffic and caused 28 fender-benders on county freeways" -- until one day I dared to ask the sheriff's department how many fender-benders were reported on clear, sunny days. The answer -- 48 -- made me wonder whether in the future we'd run stories saying, "A fierce winter snowstorm prevented 20 fender-benders on county freeways today." There may or may not have been more accidents per mile traveled in the snow, but clearly there were fewer accidents when it snowed than when it did not.

     


It is easy for people to go into brain-lock when they see a stack of papers loaded with numbers, spreadsheets and graphs. (And some sleazy sources are counting on it.) But your readers are depending upon you to make sense of that data for them.


Use what you've learned on this page to look at data with a more critical attitude. (That's critical, not cynical. There is a great deal of excellent data out there.) The worst thing you can do as a writer is to pass along someone else's word about data without any idea whether that person's worth believing or not.



zz 节选自wikipedia about data analysis

Data analysis is a process of inspecting, cleaning, transforming, and modelling data with the goal of highlighting useful information, suggesting conclusions, and supporting decision making. Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, in different business, science, and social science domains.

Data mining is a particular data analysis technique that focuses on modeling and knowledge discovery for predictive rather than purely descriptive purposes. Business intelligence covers data analysis that relies heavily on aggregation, focusing on business information. In statistical applications, some people divide data analysis into descriptive statistics, exploratory data analysis, and confirmatory data analysis. EDA focuses on discovering new features in the data and CDA on confirming or falsifying existing hypotheses. Predictive analytics focuses on application of statistical or structural models for predictive forecasting or classification, while text analytics applies statistical, linguistic, and structural techniques to extract and classify information from textual sources, a species of unstructured data. All are varieties of data analysis.

Data integration is a precursor to data analysis, and data analysis is closely linked to data visualization and data dissemination. The term data analysis is sometimes used as a synonym for data modeling, which is unrelated to the subject of this article.


The process of data analysis

Data analysis is a process, within which several phases can be distinguished:[1]

  • Data cleaning
  • Initial data analysis (assessment of data quality)
  • Main data analysis (answer the original research question)
  • Final data analysis (necessary additional analyses and report)

Data cleaning

Data cleaning is an important procedure during which the data are inspected, and erroneous data are -if necessary, preferable, and possible- corrected. Data cleaning can be done during the stage of data entry. If this is done, it is important that no subjective decisions are made. The guiding principle provided by Adèr (ref) is: during subsequent manipulations of the data, information should always be cumulatively retrievable. In other words, it should always be possible to undo any data set alterations. Therefore, it is important not to throw information away at any stage in the data cleaning phase. All information should be saved (i.e., when altering variables, both the original values and the new values should be kept, either in a duplicate dataset or under a different variable name), and all alterations to the data set should carefully and clearly documented, for instance in a syntax or a log.[2]

Initial data analysis

The most important distinction between the initial data analysis phase and the main analysis phase, is that during initial data analysis one refrains from any analysis that are aimed at answering the original research question. The initial data analysis phase is guided by the following four questions:[3]

Quality of data

The quality of the data should be checked as early as possible. Data quality can be assessed in several ways, using different types of analyses: frequency counts, descriptive statistics (mean, standard deviation, median), normality (skewness, kurtosis, frequency histograms, normal probability plots), associations (correlations, scatter plots).
Other initial data quality checks are:

  • Checks on data cleaning: have decisions influenced the distribution of the variables? The distribution of the variables before data cleaning is compared to the distribution of the variables after data cleaning to see whether data cleaning has had unwanted effects on the data.
  • Analysis of missing observations: are there many missing values, and are the values missing at random? The missing observations in the data are analyzed to see whether more than 25% of the values are missing, whether they are missing at random (MAR), and whether some form of imputation (statistics) is needed.
  • Analysis of extreme observations: outlying observations in the data are analyzed to see if they seem to disturb the distribution.
  • Comparison and correction of differences in coding schemes: variables are compared with coding schemes of variables external to the data set, and possibly corrected if coding schemes are not comparable.

The choice of analyses to assess the data quality during the initial data analysis phase depends on the analyses that will be conducted in the main analysis phase.[4]

Quality of measurements

The quality of the measurement instruments should only be checked during the initial data analysis phase when this is not the focus or research question of the study. One should check whether structure of measurement instruments corresponds to structure reported in the literature.
There are two ways to assess measurement quality:

  • Confirmatory factor analysis
  • Analysis of homogeneity (internal consistency), which gives an indication of the reliability of a measurement instrument, i.e., whether all items fit into a unidimensional scale. During this analysis, one inspects the variances of the items and the scales, the Cronbach's α of the scales, and the change in the Cronbach's alpha when an item would be deleted from a scale.[5]

Initial transformations

After assessing the quality of the data and of the measurements, one might decide to impute missing data, or to perform initial transformations of one or more variables, although this can also be done during the main analysis phase.[6]
Possible transformations of variables are:[7]

  • Square root transformation (if the distribution differs moderately from normal)
  • Log-transformation (if the distribution differs substantially from normal)
  • Inverse transformation (if the distribution differs severely from normal)
  • Make categorical (ordinal / dichotomous) (if the distribution differs severely from normal, and no transformations help)

Did the implementation of the study fulfill the intentions of the research design?

One should check the success of the randomization procedure, for instance by checking whether background and substantive variables are equally distributed within and across groups.
If the study did not need and/or use a randomization procedure, one should check the success of the non-random sampling, for instance by checking whether all subgroups of the population of interest are represented in sample.
Other possible data distortions that should be checked are:

  • dropout (this should be identified during the initial data analysis phase)
  • Item nonresponse (whether this is random or not should be assessed during the initial data analysis phase)
  • Treatment quality (using manipulation checks).[8]

Characteristics of data sample

In any report or article, the structure of the sample must be accurately described. It is especially important to exactly determine the structure of the sample (and specifically the size of the subgroups) when subgroup analyses will be performed during the main analysis phase.
The characteristics of the data sample can be assessed by looking at:

  • Basic statistics of important variables
  • Scatter plots
  • Correlations
  • Cross-tabulations[9]

Final stage of the initial data analysis

During the final stage, the findings of the initial data analysis are documented, and necessary, preferable, and possible corrective actions are taken.
Also, the original plan for the main data analyses can and should be specified in more detail and/or rewritten.
In order to do this, several decisions about the main data analyses can and should be made:

  • In the case of non-normals: should one transform variables; make variables categorical (ordinal/dichotomous); adapt the analysis method?
  • In the case of missing data: should one neglect or impute the missing data; which imputation technique should be used?
  • In the case of outliers: should one use robust analysis techniques?
  • In case items do not fit the scale: should one adapt the measurement instrument by omitting items, or rather ensure comparability with other (uses of the) measurement instrument(s)?
  • In the case of (too) small subgroups: should one drop the hypothesis about inter-group differences, or use small sample techniques, like exact tests or bootstrapping?
  • In case the randomization procedure seems to be defective: can and should one calculate propensity scores and include them as covariates in the main analyses?[10]

Analyses

Several analyses can be used during the initial data analysis phase:[11]

  • Univariate statistics
  • Bivariate associations (correlations)
  • Graphical techniques (scatter plots)

It is important to take the measurement levels of the variables into account for the analyses, as special statistical techniques are available for each level:[12]

  • Nominal and ordinal variables
    • Frequency counts (numbers and percentages)
    • Associations
      • circumambulations (crosstabulations)
      • hierarchical loglinear analysis (restricted to a maximum of 8 variables)
      • loglinear analysis (to identify relevant/important variables and possible confounders)
    • Exact tests or bootstrapping (in case subgroups are small)
    • Computation of new variables
  • Continuous variables
    • Distribution
      • Statistics (M, SD, variance, skewness, kurtosis)
      • Stem-and-leaf displays
      • Box plots


Monday, 4 January 2010

zz.2010年税收新政——国务院税务局颁布

营业税:



  • 满五年的普通住宅免征营业税

  • 不满五年的非普通住宅征收全额营业税

  • 满五年的非普通住宅和不满五年的普通住宅征收差额营业税


个人所得税:



  • 满五年的普通且是唯一一套,免征个人所得税

  • 不满五年或者非唯一,满足其中一项,即征个人所得税
    普通住宅征收1%,非普通征收2%,也可选择差额的20%缴纳


 契税新:



  • 非普通住宅和非居住房征收3%
    普通住宅征收1.5%,其中90平米以下的可以申请缴纳1%,但需提供首次购房证明,此证明需向交易中心提供买卖合同,身份证,户口本,由交易中心出具首次购房证明,交由财政核定(过程需要7个工作日)

  •  所谓首次购房证明:

    1. 购房人原有产权系售后公房买断

    2. 购房人原有产权房系动迁所得

    3. 购房人原有产权房系析产所得(如:继承等)

    4. 购房人原有产权房系和父母共同购买(原有产证上一定要有父母亲的名字)


Sunday, 3 January 2010

个人如何投资商业地产

个人如何投资商业地产 
--------------------------------------------------------------------------------


时间:2008-9-28 11:11:11   


吴取彬律师    北京君泰律师事务所上海分所
本文来源网站:http://www.anjialawyers.com 

    目前住宅房地产市场正处于深度调整时期,然而商业地产①相对于住宅市场来说仍然有比较稳定的升值,而且目前商业地产的租金在不断的攀升,因此投资商业地产对于目前持币待投的投资客来说不实为一个好的投资,但是商业地产转让时交易税费却让一些投资客望而却步。现在,我们就从现行法律法规及税收政策来谈谈个人如何合理的投资商业地产。 
  我们先来看看目前个人购买商业地产所涉及的主要税费为:3%的契税、0.05%的印花税。正常出售商业地产的税费:(营业税、教育附加、印花税)共计5.55%、土地增值税(30%--60%)、个人所得税(扣除合理费用后差价的20%)。
  很显然,上述交易税费可以占据房地产升值部分的一半以上,然而作为正常交易及不动产产权转让来说,上述税费一个都不能少,否则交易不能完成。那么如何合理的规避上述交易税费呢?分以下几种情况分别给与介绍合理的投资方案:
一、如果你正准备投资商业地产
建议设立一家公司,公司性质可以自己根据设立方便来确定,公司设立后这家公司除了对外出租该商业地产外不涉及其他经营活动,待所投资的商业地产升值后再进行股权转让,从而避免资产交易涉及的营业税、土地增值税、以及个人所得税,以当初购买价100万元,增值后为200万,即增值为100万元计算,若个人直接投资购买,然后再转让所涉及的税费为:11.1万元 ,其中增值税为:35万元,个人所得税为:10.78万元,最后投资所得为:43.12万元,而设立公司投资后转让股权投资所得仅涉及个人所得税20%  即此次投资所得为人民币80万元,很显然通过设立公司然后进行股权转让的方式比较合算。
二、如果已经拥有商业地产
同样以上述案例来计算如果直接转让将获得43.12万元的投资收益,但是通过以商业地产作为出资设立公司,投资收益就完全不一样了。根据财政部、国家税务总局《关于股权转让有关营业税问题的通知》(财税[2002]191号)规定,以无形资产、不动产投资入股,参与接受投资方利润分配,共同承担投资风险的行为,不征收营业税,对股权转让不征收营业税以及《财政部、国家税务总局关于土地增值税一些具体问题规定的通知》的规定对于以房地产进行投资、联营的,投资、联营的一方以土地(房地产)作价入股进行投资或作为联营条件,将房地产转让到所投资、联营的企业中时,暂免征收土地增值税。也就是说若以商业地产出资设立公司仅发生的税费为:3%的契税及0.1%的印花税。也就是说上述案例中,如果以不动产出资设立公司,然后进行股权转让可获得94万元的投资收益。但是由于公司的设立受到公司法关于公司设立现金出资比例为不低30%的规定以及《公司法》第二十六条关于有限责任公司的全体股东的首次出资额不得低于注册资本的百分之二十的规定,即该公司的注册资本不低于285.7万元,也就是说在公司注册时需要提供57.14万元的注册资金。虽然公司以上投资方案有些繁琐,但是对于投资收益来说可以大大提高,达到了投资增值要求,合理的规避了部分税费。
同时也应该注意到现行的税收政策,不动产出资仅仅是暂免征收土地增值税,对于股权转让时是否要补征土地增值税问题,目前还没有明确说法,但从目前接触的案例来说,均未补征相应的土地增值税。希望以上两种投资方案能给大家在投资商业地产上提供一个参考。 

注:土地增值税(30%--60%)为超额累进税率 根据增值比例确定

Friday, 1 January 2010